1. Show that the point $\left(\frac{7}{25}, \frac{24}{25}\right)$ lies on the unit circle.

The point P is on the unit circle. Find P(x, y) from the given information.

- 2. The y-coordinate is $-\frac{7}{25}$ and P is in Q4 3. The x-coordinate is $-\frac{2}{5}$ and P lies above the x-axis

Find the reference angle for the following angles.

4.
$$\frac{7\pi}{3}$$

5.
$$-\frac{5\pi}{6}$$

6.
$$\frac{17\pi}{4}$$

Find the exact value of the trigonometric function at the given real number. (BY HAND!)

7.
$$\sec \frac{11\pi}{6}$$

8.
$$\csc(-\pi)$$

9.
$$\cot \frac{-3\pi}{2}$$

10.
$$\sin \frac{3\pi}{2}$$

11.
$$\cos \frac{5\pi}{3}$$

12.
$$tan - \frac{3\pi}{4}$$

13.
$$sin \frac{5\pi}{6}$$

14.
$$cos - 3\pi$$

15.
$$tan - \frac{2\pi}{3}$$

16. If $\left(-\frac{5}{13}, -\frac{12}{13}\right)$ is a terminal point on the unit circle determined by angle θ , then find $\sin \theta$, $\cos \theta$, and $\tan \theta$.

Determine the sign of the expression if the triangle lies in the given quadrant.

17. $tan t \cdot sec t$; Q4

- 18. $\frac{\cos t \sec t}{\tan t}$; Q2
- 19. Given $\tan t > 0$ and $\sin t < 0$, find the *quadrant* in which the terminal point of **t** lies.

20. Find the values of the five other trigonometric functions if $\cos t = -\frac{4}{5}$ and the terminal point determined by **t** lies in the 3rd quadrant.

Determine whether the function is even or odd. (Use your TI-84 to graph the function)

$$21. \ f(x) = x^2 \cos 2x$$

$$22. \ f(x) = \sin x + \cos x$$